88

N91-28202

CRYOGENIC UPPER STAGE PROPULSION

RL10 and Derivative Engines

Presented to: Space Transportation Propulsion Technology Symposium Pennsylvania State University

June 1990

Presented by: James R. Brown Manager, Upper Stage Programs

SPACE PROPULSION AND SYSTEMS
P. O. Box 109600
West Palm Beach, Florida 33410-9600

TOPICS

- Engine model history
- RL10 demonstrated capabilities
- RL10 derivative potential for SEI
- Summary

RL10 LIQUID HYDROGEN ROCKET ENGINE

• Perfect flight record - 100% reliable

RL10A-3-3A ENGINE

Vacuum thrust, Ib	16,500
Specific impulse, sec	444.4
Weight, Ib	305
Mixture ratio	5:1
Chamber pressure, psia	475
Area ratio	61:1
Qual life, firings/hr	20/1.25

RL10 EVOLUTION

Model no.	<u>A-1</u>	<u>A-3</u>	<u>A-3-1</u>	<u>A-3-3</u>	<u>A-3-3A</u>	<u>A-4</u>
Vac thrust, tb	15,000	15,000	15,000	15,000	16,500	20,800
Chamber pressure, psia	300	300	300	395	475	578
Thrust/weight	50	50	50	50	54	57
Expansion ratio	40:1	40:1	40:1	57:1	61:1	84:1
l _{sp} , sec at 5.0 O/F (5.5)	424	429	433	442.4	444.4	(449.0)
Flight certification date	11/61	6/62	9/64	10/66	11/81	12/90

RL10 DEVELOPMENT HISTORY

RL10 EXPERIENCE

Demonstrated capability

- High ratio nozzle
- Durability
- Low thrust/throttling
- Higher thrust
- High mixture ratio
- Alternate propellants

HIGH AREA RATIO NOZZLE

- Extensive testing with 84 area ratio extensions
- Boilerplate 205 area ratio tested
- High area ratio contour primary nozzle tested
- Extending / retracting system under development

CONCEPT VERIFICATION 84 AREA RATIO NOZZLE TESTING

(4)

RL10 engine installed in E-6 test stand

Carbon/carbon nozzle during engine run

Carbon/carbon nozzles (2)

9,233 sec (69 firings)

Columbium nozzles

5,392 sec (26 firings)

Total

14,625 sec (95 firings)

RL10 EXPERIENCE

205 area ratio boilerplate nozzle results

RL10A-3-3

RL10A-3-3 with $\varepsilon = 205$ Nozzle Extension

Short RL10 Derivative 11B $\varepsilon = 205$

Δ Specific Impulse (ε = 57 to ε = 205)

$$20.9 \sec @ O/F = 5.0$$

 $20.4 \sec @ O/F = 6.0$

RL10 EXPERIENCE Durability

Life potential greater than 5.0 hours, 200 firings at 15K thrust

RL10 EXPERIENCE

Durability

- Rubbing carbon seal life limit on turbo machinery
 - Function of velocity proportional to speedGears may be limit above 25K thrust
- Chamber low cycle fatigue limit on number of firings
 - Most severe strain during start transient

RL10 EXPERIENCE

Low Thrust

1960's Testing

- * Full Throttling
- * Complex Controls
- * High Loss Injector

1980's Testing

- * Stepped Thrust Levels
- * Simple Controls
- * Gox Heat Exchanger

RL 10 EXPERIENCE RL 10 low thrust summary

RL10 EXPERIENCE
Typical RL10A-4 throttling test

RL10 EXPERIENCE

RL10 combustor instability characteristics

RL 10 EXPERIENCE Stable throttling to less than 2%

RL10 EXPERIENCE
High mixture ratio summary

- 250 sec greater than 7.0 O/F - 7 engines -
- One run up to 13.5 O/F
 - - 5.0 to 13,5 in 35 sec
- One run over 7.5 O/F more than 60 sec

NO ENGINE DAMAGE FROM HIGH O/F OPERATION!!

RL10 EXPERIENCE Stoichiometric mixture ratio demonstrated

RL10 EXPERIENCE

Alternate Propellants

FLOX/CH4 9 Tests 120 Sec 11K Thrust

02/C3H8;;23 Tests 106 Sec 14K Thrust

F2/H2 29 Tests 1757 Sec 21K Thrust

RL10 CAPABILITY
Space initiative space propulsion requirements

- Throttling
- High performance
- Reusable
- Space based
- · Man rated

RL10 CAPABILITY

Throttling

Throttling engine testing 1963 through 1965 (under MSFC contract) most applicable

- 309 Tests
- 37,561 Seconds
- Demonstrated stable, continuous throttling down to 2% thrust
- Solved oxidizer chugging stability and fuel system stability problems

RL10 CAPABILITY

Specific modifications for continuous throttling

- Control valves
 - Fuel control (turbine bypass)
 - Oxidizer control
 - Cavitating venturi
- Scheduler (controller)
- Idler gear ratio (from 2.5 to 2.13)
- High loss injector

RL10 CAPABILITY

High performance

- High area ratio nozzle
 - Extensive testing 84 area ratio extensions
 - Boilerplate 205 area ratio tested
 - Extending/retracting system under development
- Impulse potential > 470 sec
- Available impulse dependent on envelope constraints

EFFECT OF THRUST LEVEL ON PERFORMANCE

RL10 CAPABILITY Reusable

Life potenital greater than 5.0 hours, 200 firings

MAN-RATING

- High reliability
- Noncatastrophic failure modes
- Redundant components and/or engine out

RL10 CAPABILITY

Man-rated

- RL10 has high demonstrated reliability (0.9984 @ 90% confidence level)
- RL10 has benign failure modes
 (Current base model RL10A-3-3 has > 3,800 tests
 over 25 years with no catastrophic engine failures)
- With engine-out capability, RL10 propulsion system would have very high reliability and safety

SPACE-BASING

- Minimal maintenance needed
- Health monitoring provided
- Easy engine change-out capable
- Long space exposure compatible

RL10 CAPABILITY

Space based

- Only minor maintenance practical in space environment
- · Removal of entire engine most likely solution for problem
- RL10 could be modified to facilitate engine changeout
- RL10 well characterized for health diagnostic purposes
- RL10 has demonstrated reusability in space (7 firings on single mission)

SUMMARY

THE RL10 IS NOT DESIGNED TO BE

- · A high pressure engine
- · A small envelope engine
- Inherently redundant

AN RL10 DERIVATIVE IS . . .

- Based on in-depth studies/hardware demonstrations
- Low maximum system pressures
- Low program risk
- Near-term available
- Highly reliable due to its simplicity/low pressure
- Well characterized and understood (large data base)
- Turbo machinery configured for full throttling
- Failure tolerant
- Multiple start capability

RL10 DERIVATIVE

Options

- Deep continuous throttling
- Extended operational life
- High area ratio nozzle
- Higher thrust
- Higher mixture ratio
- H₂ and/or O₂ tank pressurization
- · Tank head idle
- Health monitoring
- Quick/smart disconnects

RL10 DERIVATIVE OPTION RANGES

	RL10A-4 (New)	RL10 Derivative B Family C Family		
Thrust Ibs	20,800	15,000 to 22,000 25,000 to 35,000		
Nominal mixture ratio	5 5	4 0 to 12.0		
Area ratio	84	up to 600+		
Thrust positions	Full thrust	Multi position or continuous deep throttling		
TBO, firings	15	60 +		
HRS	0.8	2+		
Tank pressurization	H 2	H 2 and/or O 2		
Engine conditioning	Dump	Dump or THI		

RL10 CAPABILITY

Summary

- · RL10 reliability record unmatched
- . Throttling capability demonstrated
- Durability potential demonstrated
- RL10 has demonstrated many capabilities required for space initiative propulsion

PRESENTATION 1.2.4

SATELLITE/SPACECRAFT PROPULSION

	•	